首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25413篇
  免费   600篇
  国内免费   156篇
化学   16936篇
晶体学   192篇
力学   643篇
综合类   1篇
数学   4376篇
物理学   4021篇
  2021年   156篇
  2020年   213篇
  2019年   284篇
  2018年   232篇
  2017年   207篇
  2016年   442篇
  2015年   344篇
  2014年   455篇
  2013年   1321篇
  2012年   1191篇
  2011年   1508篇
  2010年   780篇
  2009年   624篇
  2008年   1365篇
  2007年   1417篇
  2006年   1409篇
  2005年   1411篇
  2004年   1240篇
  2003年   1042篇
  2002年   919篇
  2001年   293篇
  2000年   248篇
  1999年   196篇
  1998年   207篇
  1997年   258篇
  1996年   332篇
  1995年   285篇
  1994年   270篇
  1993年   279篇
  1992年   265篇
  1991年   232篇
  1990年   223篇
  1989年   236篇
  1988年   259篇
  1987年   246篇
  1986年   240篇
  1985年   383篇
  1984年   435篇
  1983年   320篇
  1982年   425篇
  1981年   401篇
  1980年   337篇
  1979年   324篇
  1978年   346篇
  1977年   330篇
  1976年   274篇
  1975年   270篇
  1974年   260篇
  1973年   239篇
  1972年   143篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
81.
A wide range of studies in population genetics have employed the sample frequency spectrum (SFS), a summary statistic which describes the distribution of mutant alleles at a polymorphic site in a sample of DNA sequences and provides a highly efficient dimensional reduction of large-scale population genomic variation data. Recently, there has been much interest in analyzing the joint SFS data from multiple populations to infer parameters of complex demographic histories, including variable population sizes, population split times, migration rates, admixture proportions, and so on. SFS-based inference methods require accurate computation of the expected SFS under a given demographic model. Although much methodological progress has been made, existing methods suffer from numerical instability and high computational complexity when multiple populations are involved and the sample size is large. In this article, we present new analytic formulas and algorithms that enable accurate, efficient computation of the expected joint SFS for thousands of individuals sampled from hundreds of populations related by a complex demographic model with arbitrary population size histories (including piecewise-exponential growth). Our results are implemented in a new software package called momi (MOran Models for Inference). Through an empirical study, we demonstrate our improvements to numerical stability and computational complexity.  相似文献   
82.
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.  相似文献   
83.
Solvothermally synthesized cobalt sulphide/reduced graphene oxide (CoS/rGO) was used to fabricate an electrochemical sensor for detection of artemisinin. Microscopic techniques were used to characterize CoS/rGO nanocomposite. The electrochemical sensor was fabricated by modifying the surface of glassy carbon electrode with CoS/rGO nanocomposite. [Fe(CN)6]3−/4− was used as a mediator to aid oxidation of artemisinin. Differential pulse voltammetric technique was used for the detection of artemisinin. A linear range of 30–100 μM was used. Experimentally, a detection limit of 0.5 μM was obtained. Therefore, the developed sensor can be used for quality control of artemisinin.  相似文献   
84.
Glutathione (GSH-reduced form) is a tripeptide that plays a vital role as an antioxidant to remove xenobiotics in the human body and changes in GSH levels are a marker for the progression of various diseases. In this context, a highly sensitive non-enzymatic electrochemical biosensor for the detection of GSH has been developed using reduced graphene oxide Manganese oxide (rGMnO) nanocomposite as the nano-interface. Initially, graphene oxide was synthesized by Hummer's method and then thermally reduced in the presence of MnO2 in a blast furnace to obtain rGMnO nanocomposite. The nanocomposite was characterized to validate its structure and morphological properties via Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry and amperometry studies showed that upon the addition of GSH, the Pt/rGMnO modified working electrode exhibited a linear response in the range of 1–100 μM at an input voltage of −0.62 V. The developed sensor was found to have a sensitivity of 0.3256 μA μM−1 and LOD of 970 nM with a recovery of 92–104 % in real blood serum samples.  相似文献   
85.
Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10 nm to 100 nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.  相似文献   
86.
We present the synthesis of 1,1-bis(fluorosulfonyl)-2-(pyridin-1-ium-1-yl)ethan-1-ide, a bench-stable precursor to ethene-1,1-disulfonyl difluoride (EDSF). The novel SuFEx reagent, EDSF, is demonstrated in the preparation of 26 unique 1,1-bissulfonylfluoride substituted cyclobutenes via a cycloaddition reaction. The regioselective click cycloaddition reaction is rapid, straightforward, and highly efficient, enabling the generation of highly functionalized 4-membered ring (4MR) carbocycles. These carbocycles are valuable structural motifs found in numerous bioactive natural products and pharmaceutically relevant small molecules. Additionally, we showcase diversification of the novel cyclobutene cores through selective Cs2CO3-activated SuFEx click chemistry between a single S−F group and an aryl alcohol, yielding the corresponding sulfonate ester products with high efficiency. Finally, density functional theory calculations offer mechanistic insights about the reaction pathway.  相似文献   
87.
Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure-property predictions to generate energy-structure-function (ESF) maps for a series of triptycene-based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low-energy HOF (TH5-A) with a remarkably low density of 0.374 g cm−3 and three-dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5-A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.  相似文献   
88.
Piezocatalysis offers a means to transduce mechanical energy into chemical potential, harnessing physical force to drive redox reactions. Working in the solid state, we show here that piezoelectric BaTiO3 nanoparticles can transduce mechanical load into a flux of reactive radical species capable of initiating solid state free radical polymerization. Activation of a BaTiO3 powder by ball milling, striking with a hammer, or repeated compressive loading generates highly reactive hydroxyl radicals (⋅OH), which readily initiate radical chain growth and crosslinking of solid acrylamide, acrylate, methacrylate and styrenic monomers. Control experiments indicate a critical role for chemisorbed water on the BaTiO3 nanoparticle surface, which is oxidized to ⋅OH via mechanoredox catalysis. The force-induced production of radicals by compressing dry piezoelectric materials represents a promising new route to harness mechanical energy for solid state radical synthesis.  相似文献   
89.
We describe a AuI complex of a hemi-labile (C^N) N-heterocyclic carbene ligand that is able to mediate oxidative addition of aryl iodides. Detailed computational and experimental investigations have been undertaken to verify and rationalize the oxidative addition process. Application of this initiation mode has resulted in the first examples of “exogenous oxidant-free” AuI/AuIII catalyzed 1,2-oxyarylations of ethylene and propylene. These demanding yet powerful processes establish these commodity chemicals as nucleophilic-electrophilic building blocks in catalytic reaction design.  相似文献   
90.
The sirtuins are NAD+-dependent lysine deacylases, comprising seven isoforms (SIRT1–7) in humans, which are involved in the regulation of a plethora of biological processes, including gene expression and metabolism. The sirtuins share a common hydrolytic mechanism but display preferences for different ϵ-N-acyllysine substrates. SIRT7 deacetylates targets in nuclei and nucleoli but remains one of the lesser studied of the seven isoforms, in part due to a lack of chemical tools to specifically probe SIRT7 activity. Here we expressed SIRT7 and, using small-angle X-ray scattering, reveal SIRT7 to be a monomeric enzyme with a low degree of globular flexibility in solution. We developed a fluorogenic assay for investigation of the substrate preferences of SIRT7 and to evaluate compounds that modulate its activity. We report several mechanism-based SIRT7 inhibitors as well as de novo cyclic peptide inhibitors selected from mRNA-display library screening that exhibit selectivity for SIRT7 over other sirtuin isoforms, stabilize SIRT7 in cells, and cause an increase in the acetylation of H3 K18.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号